Apply Give

Nathaniel Morgan, B.S., M.S., Ph.D.

Mechanical Engineering

Education

  • Ph.D., Mechanical Engineering, Georgia Institute of Technology
  • M.S., Mechanical Engineering, Georgia Institute of Technology
  • B.S., Mechanical Engineering, University of Arizona

Recent Journal Publications

  • K. Lipnikov and N. R. Morgan. A high-order conservative remap for discontinuous Galerkin schemes on curvilinear polygonal meshes, Journal of Computational Physics, 09/2019, DOI:10.1016/j.jcp.2019.108931
  • E. Lieberman, N. R. Morgan, D. J. Luscher, and D. E. Burton. A higher-order Lagrangian discontinuous Galerkin hydrodynamic method using infinitesimal and finite strain theory for hyperelastic-plastic flows, Computer Methods in Applied Mechanics and Engineering, 05/2019; DOI:10.1016/j.cma.2019.05.006
  • K. Lipnikov and N. R. Morgan. A high-order discontinuous Galerkin method for level set problems on polygonal meshes, Journal of Computational Physics, 07/2019; DOI:10.1016/j.jcp.2019.07.033
  • Jacob L. Moore, N. R. Morgan, and Mark F. Horstemeyer. ELEMENTS: A high-order finite element library in C++, 2019; DOI:10.1016/j.softx.2019.100257
  • X. Liu, N. R. Morgan, and D. E. Burton. A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme, Journal of Computational Physics, 02/2019; DOI:10.1016/j.jcp.2019.02.008
  • E. Lieberman, N. R. Morgan, D. J. Luscher, and D. E. Burton. A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for elastic-plastic flows, Journal of Computers and Mathematics with Applications, 8/2018; DOI: 10.1016/j.camwa.2018.08.020.
  • X. Liu, N. R. Morgan, and D. E. Burton. Lagrangian discontinuous Galerkin hydrodynamic methods in axisymmetric coordinates, Journal of Computational Physics, 07/2018; DOI: 10.1016/j.jcp.2018.06.073
  • N. R. Morgan, X. Liu, and D. E. Burton. Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods, Journal of Computational Physics, 06/2018; DOI: 10.1016/j.jcp.2018.06.008
  • V. Chiravalle and N. R. Morgan. A 3D Lagrangian cell-centered hydrodynamic method with higher-order reconstructions for gas and solid dynamics, Journal of Computers and Mathematics with Applications, 06/2018; DOI: 10.1016/j.camwa.2018.06.011
  • A. Barlow, N. R. Morgan, and M. Shashkov. Constrained optimization framework for interface-aware sub-scale dynamics discrete closure model for multimaterial cells in Lagrangian cell-centered hydrodynamics. Journal of Computers and Mathematics with Applications, 06/2018; DOI: 10.1016/j.camwa.2018.06.015
  • T. Wu, M. Shashkov, N. R. Morgan, H. Luo, and D. Kuzmin. An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics, Journal of Computers and Mathematics with Applications, 04/2018; DOI: 10.1016/j.camwa.2018.03.040
  • X. Liu, N. R. Morgan, and D.E. Burton. A Lagrangian discontinuous Galerkin hydrodynamic method. Computers & Fluids, 12/2017; DOI:10.1016/j.compfluid.2017.12.007
  • D.E. Burton, N. R. Morgan, M.R.J. Charest, M.A. Kenamond, and J. Fung. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme. Journal of Computational Physics, 11/2017; DOI:10.1016/j.jcp.2017.11.017
  • J. Bakosi, J. Waltz, and N. R. Morgan. Improved ALE mesh velocities for complex flows. International Journal for Numerical Methods in Fluids, 05/2017; DOI:10.1002/fld.4403
  • N. R. Morgan, and J. I. Waltz. 3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement. Journal of Computational Physics, 05/2017; DOI:10.1016/j.jcp.2017.02.030
  • V. P. Chiravalle and N. R. Morgan. A 3D Finite Element ALE Method using an Approximate Riemann Solution,. International Journal for Numerical Methods in Fluids, 07/2016; DOI:10.1002/fld.4284
  • C. C. Pederson, B. L. Brown, and N. R. Morgan. The Sedov blast wave as a radial piston verification test, 05/2016;, DOI:10.1115/1.4033652
  • D. Burton, N. R. Morgan, T. Carney, and M. Kenamond. Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR). Journal of Computational Physics, 07/2015; DOI:10.1016/j.jcp.2015.06.041
  • M. R. J. Charest, T. R. Canfield, N. R. Morgan, J. I. Waltz, and J. G. Wohlbier. A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows. Computers & Fluids, 07/2015; DOI:10.1016/j.compfluid.2015.03.001
  • N. R. Morgan, J. I. Waltz, D. E. Burton, M. R. Charest, T. R. Canfield, and J. G. Wohlbier. A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes. Journal of Computational Physics, 02/2015; DOI:10.1016/j.jcp.2015.02.024
  • J. Waltz, J. G. Wohlbier, L. D. Risinger, T. R. Canfield, M. R. J. Charest, A. R. Long, and N. R. Morgan. Performance analysis of a 3D unstructured mesh hydrodynamics code on multi-core and many-core architectures. International Journal for Numerical Methods in Fluids, 11/2014; DOI:10.1002/fld.3982
  • N. R. Morgan, J. I. Waltz, D. E. Burton, M. R. Charest, T. R. Canfield, and J. G. Wohlbier. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach. Journal of Computational Physics, 10/2014; DOI:10.1016/j.jcp.2014.10.048
  • J. I. Waltz, N. R. Morgan, T. R. Canfield, M. R. J. Charest, and J. G. Wohlbier. A nodal Godunov method for Lagrangian shock hydrodynamics on unstructured tetrahedral grids. International Journal for Numerical Methods in Fluids, 09/2014; DOI:10.1002/fld.3928
  • J. Waltz, T. R. Canfield, N. R. Morgan, L. D. Risinger, and J. G. Wohlbier. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion. Journal of Computational Physics, 06/2014; DOI:10.1016/j.jcp.2014.02.040
  • N. R. Morgan, K. N. Lipnikov, D. E. Burton, and M. A. Kenamond. A Lagrangian staggered grid Godunov-like approach for hydrodynamics. Journal of Computational Physics, 01/2014; DOI:10.1016/j.jcp.2013.12.013
  • N. R. Morgan. A dissipation model for staggered grid Lagrangian hydrodynamics. Computers & Fluids, 08/2013; DOI:10.1016/j.compfluid.2012.05.018
  • D. E. Burton, T. C. Carney, N. R. Morgan, S. K. Sambasivan, and M. J. Shashkov. A cell-centered Lagrangian Godunov-like method for solid dynamics. Computers & Fluids, 08/2013; DOI:10.1016/j.compfluid.2012.09.008
  • J. Waltz, T. R. Canfield, N. R. Morgan, L. D. Risinger, and J. G. Wohlbier. Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions. Computers & Fluids, 07/2013; 81:57-67., DOI:10.1016/j.compfluid.2013.03.025
  • N. R. Morgan, M. A. Kenamond, D. E. Burton, T. C. Carney, and D. J. Ingraham. An Approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics. Journal of Computational Physics, 05/2013; DOI:10.1016/j.jcp.2013.05.015
  • J. Waltz, N. R. Morgan, T. R. Canfield, M. R. Charest, L. D. Risinger, and J. G. Wohlbier. A three-dimensional finite element arbitrary Lagrangian-Eulerian method for shock hydrodynamics on unstructured grids. Computers & Fluids, 01/2013; DOI:10.1016/j.compfluid.2013.12.021

 

Recent Conference Papers

  • Xiaodong Liu, N. R. Morgan, and Donald Burton. A robust Lagrangian discontinuous Galerkin method on quadratic triangular meshes using sub-cell mesh stabilization. AIAA Aviation 2019 Forum, 06/2019; DOI:10.2514/6.2019-3319
  • Xiaodong Liu, N. R. Morgan, Donald Burton. A robust and accurate third-order Lagrangian discontinuous Galerkin hydrodynamic method for the compressible Euler equations on curvilinear meshes. AIAA Scitech 2019 Forum, 01/2019; DOI:10.2514/6.2019-1401
  • X. Liu, N. R. Morgan, and D. E. Burton: Exploration of consistent numerical integration for a 2D Lagrangian discontinuous Galerkin (DG) hydrodynamic method. 2019 AIAA SciTech Forum, 01/2019; https://doi.org/10.2514/6.2019-0644
  • X. Liu, N. R. Morgan, and D. E. Burton. Exploration of a sub-cell stabilization scheme for the high-order Lagrangian discontinuous Galerkin hydrodynamic method. 2019 AIAA SciTech Forum, 01/2019; https://doi.org/10.2514/6.2019-1401
  • X. Liu, N. R. Morgan, and D. E. Burton. A comparative study of two different methods for RZ axisymmetric coordinates in context of Lagrangian discontinuous Galerkin hydrodynamics. AIAA Aviation and Aeronautics Forum and Exposition (AIAA AVIATION 2018), 06/2018; https://doi.org/10.2514/6.2018-4269
  • X. Liu, N. R. Morgan, and D. E. Burton. A Lagrangian cell-centered discontinuous Galerkin hydrodynamic method for 2D Cartesian and RZ axisymmetric coordinates. 2018 AIAA SciTech Forum, 01/2018; https://doi.org/10.2514/6.2018-1562
  • N. R. Morgan, X. Liu, and D. E. Burton: A Lagrangian discontinuous Galerkin hydrodynamic method for higher-order triangular elements. 2018 AIAA SciTech Forum, 01/2018; https://doi.org/10.2514/6.2018-1092
  • M. R. Charest, T. R. Canfield, N. R. Morgan, J. Waltz, and J.G Wohlbier. A high-order finite-volume method for compressible flows on moving tetrahedral grids. 53rd AIAA Aerospace Sciences Meeting, 01/2015, DOI:10.2514/6.2015-0297
  • M. R. Charest, T. R. Canfield, N. R. Morgan, J. Waltz, and J. G. Wohlbier. A vertex-based high-order finite-volume scheme for three-dimensional compressible flows on tetrahedral mesh. 11th World Congress on Computational Mechanics; 07/2014
Chat Live Chat Live Request Info Request Info Apply Now Apply Now Visit Liberty Visit Liberty